Yin and Yang of reciprocally scale-free biological networks between disease genes and death genes

نویسنده

  • Ju Han Kim
چکیده

Biological networks often show a scale-free power-law distribution. Furthermore, leathal genes tend to form functional hubs whereas non-leathal disease genes are located at the periphery. Uni-dimensional analyses, however, are flawed. Here we report two distinct scale-free networks; a protein-protein interaction (PPI) and a perturbationsensitivity (PSN) network. Hubs of both networks demonstrate a low molecular evolutionary rate and a high codon adaptation index, indicating that both hubs have been shaped under high evolutionary selective pressure. Moreover, the topologies of PPI and PSN are inversely proportional: hubs of PPI tend to be located at the periphery of PSN and vice versa. PPI hubs are highly enriched with lethal genes whereas PSN hubs with disease genes and drug targets. PPI network hubs are enriched with essential cellular processes whereas PSN hubs with environmental interactions like TATA boxes and transcription factor binding sites. It is concluded that biological systems may balance internal growth signaling and external stress signaling by unifying the two opposite scale-free networks that are reciprocal to each other but work in concert between death and disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yin and Yang of disease genes and death genes between reciprocally scale-free biological networks

Biological networks often show a scale-free topology with node degree following a power-law distribution. Lethal genes tend to form functional hubs, whereas non-lethal disease genes are located at the periphery. Uni-dimensional analyses, however, are flawed. We created and investigated two distinct scale-free networks; a protein-protein interaction (PPI) and a perturbation sensitivity network (...

متن کامل

Identification and prioritization genes related to Hypercholesterolemia QTLs using gene ontology and protein interaction networks

Gene identification represents the first step to a better understanding of the physiological role of the underlying protein and disease pathways, which in turn serves as a starting point for developing therapeutic interventions. Familial hypercholesterolemia is a hereditary metabolic disorder characterized by high low-density lipoprotein cholesterol levels. Hypercholesterolemia is a quantitativ...

متن کامل

Analysis of Gene Expression, Signaling Pathways, and Interaction Networks of Some Effective Genes in Patients with Asthma in Microarray Studies Using R Software

 Background and purpose: Asthma is a chronic inflammatory disorder of the airways caused by a combination of complex environmental and genetic interactions. There is an incomplete understanding of this mechanism which affect both severity of the disease and how it responds to treatment. Different gene expressions are reported in patients with asthma and healthy controls. Materials and methods:...

متن کامل

Investigation of the Association between Rs13075270 and Rs13092160 Polymorphisms of CCR1 and CCR3 Genes with Behcet’s Disease

Introduction: Behcet's disease is an autoimmune disease that can affect various parts of the body. This disease manifests itself with skin, oral and ocular lesions. Although it is an idiopathic disease, various factors, including environmental and genetic factors, contribute to the onset of it. In this study, the association between two polymorphisms, namely rs13075270 and rs13092160 of CCR1 an...

متن کامل

Identification of Alzheimer disease-relevant genes using a novel hybrid method

Identifying genes underlying complex diseases/traits that generally involve multiple etiological mechanisms and contributing genes is difficult. Although microarray technology has enabled researchers to investigate gene expression changes, but identifying pathobiologically relevant genes remains a challenge. To address this challenge, we apply a new method for selecting the disease-relevant gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013